Estimating 3D Body Pose using Uncalibrated Cameras
نویسندگان
چکیده
An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a “virtual camera” is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.
منابع مشابه
Real-time Upper Body 3D Pose Estimation from a Single Uncalibrated Camera
This paper outlines a method of estimating the 3D pose of the upper human body from a single uncalibrated camera. The objective application lies in 3D Human Computer Interaction where hand depth information offers extended functionality when interacting with a 3D virtual environment, but it is equally suitable to animation and motion capture. A database of 3D body configurations is built from a...
متن کاملOn Aligning Sets of Points Reconstructed from Uncalibrated Affine Cameras
The reconstruction of rigid scenes from multiple images is a central topic in computer vision. Approaches merging partial 3D models in a hierarchical manner have proven the most effective to deal with large image sequences. One of the key building blocks of these hierarchical approaches is the alignment of two partial 3D models by computing a 3D transformation. This problem has been well-studie...
متن کاملHandling Missing Data in the Computation of 3D Affine Transformations
The reconstruction of rigid scenes from multiple images is a central topic in computer vision. Approaches merging partial 3D models in a hierarchical manner have proven the most effective to deal with large image sequences. One of the key building blocks of these hierarchical approaches is the alignment of two partial 3D models, which requires to express them in the same 3D coordinate frame by ...
متن کاملEstimating Human Dynamics On-the-fly Using Monocular Video For Pose Estimation
Human pose estimation using uncalibrated monocular visual inputs alone is a challenging problem for both the computer vision and robotics communities. From the robotics perspective, the challenge here is one of pose estimation of a multiply-articulated system of bodies using a single nonspecialized environmental sensor (the camera) and thereby, creating low-order surrogate computational models ...
متن کاملBody Pose Tracking From Uncalibrated Camera Using Supervised Manifold Learning
We present a framework to estimate 3D body configuration and view point from a single uncalibrated camera. We model shape deformations corresponding to both view point and body configuration changes through the motion. Such observed shapes present a product space (different configurations × different views) and therefore lie on a two dimensional manifold in the visual input space. The approach ...
متن کامل